Ligand photodissociation in Ru(ii)-1,4,7-triazacyclononane complexes enhances water oxidation and enables electrochemical generation of surface active species

Hussein A. Younus, Nazir Ahmad, Ibrahim Yildiz, Serge Zhuiykov, Shiguo Zhang, Francis Verpoort

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Although some ligand transformations involved in metal complexes have been reported during water oxidation (WO) ((photo)chemical/electrochemical), such as ligand decomposition, partial oxidation, or complete dissociation, ligand photodissociation has not been reported yet. Here, we report the first example of ligand photodissociation in [Ru([9]-aneN3)(bpy)(DMSO)]2+,1(bpy is 2,2′-bipyridine), under the frequently used conditions for screening water oxidation catalysts, and its relation to the catalyst activity. We demonstrate that the observed photodissociation in complex1boosts its catalytic performance towards electrochemical WO and enables surface generation of electrochemically active species. Conversely, the absence of such a phenomenon in [Ru([9]-aneN3)(pic)(DMSO)]+,2(pic is 2-picolinate), resulted in an unreactive catalyst towards WO. DFT calculations could explain the observed difference between complexes1and2aqueous solutions towards ligand partial-dissociation when exposed to light based on the activation barrier between triplet metal-to-ligand charge transfer (3MLCT) and dissociative metal-centered (3MC) excited states as well as the stability of the3MC state. Whereas the3MLCT-3MC transition for complex2requires higher activation energy than that for complex1, the resulting3MC state is less stable than its3MLCT state. Calculations involving the ligand exchange process reveal that a water molecule can replace one of the pyridine rings with a considerably lower activation barrier in the triplet state as compared to the singlet state.

Original languageEnglish
Pages (from-to)3399-3408
Number of pages10
JournalCatalysis Science and Technology
Volume10
Issue number10
DOIs
Publication statusPublished - 21 May 2020

ASJC Scopus subject areas

  • Catalysis

Fingerprint Dive into the research topics of 'Ligand photodissociation in Ru(ii)-1,4,7-triazacyclononane complexes enhances water oxidation and enables electrochemical generation of surface active species'. Together they form a unique fingerprint.

  • Cite this