Abstract
The results of the study of the structural-phase state, the optical and impact-protective properties of Si-Al-N coatings with a thickness from 0.9 to 6.2?μm deposited by pulsed magnetron sputtering on a substrate made of the KV type quartz glass are presented. The formation of the nanoscale single-phase AlN (hcp) with a crystallite size up to 20?nm was discovered by the X-ray diffraction method. Coatings based on Si-Al-N are characterized by high values of microhardness (Hμ ? 25?GPa) and the coefficient of elastic recovery (ky = 0.71-0.85). The Si-Al-N coatings are characterized by a high degree of transparency (about 80%) in the visible range of wavelengths and are completely opaque in the ultra-violet regions. The refractive index of the glass samples with coatings on the basis of Si-Al-N was determined using the transmission spectra whose value decreases from 2.04 to 1.87 with increasing thickness of coatings. The results of the study of the surface density of the craters formed on the surface of the initial quartz glass and the quartz glass with Si-Al-N coatings due to the influence of high-speed Fe particles of the micron size are described.
Original language | English |
---|---|
Title of host publication | Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures |
Publisher | American Institute of Physics Inc. |
Volume | 1683 |
ISBN (Electronic) | 9780735413306 |
DOIs | |
Publication status | Published - 27 Oct 2015 |
Event | International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2015 - Tomsk, Russian Federation Duration: 21 Sep 2015 → 25 Sep 2015 |
Conference
Conference | International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2015 |
---|---|
Country | Russian Federation |
City | Tomsk |
Period | 21.9.15 → 25.9.15 |
Keywords
- crater density
- magnetron deposition
- microhardness
- optical properties
- protective coating
- structure-phase state
ASJC Scopus subject areas
- Physics and Astronomy(all)