Investigation of the effects of an intense pulsed ion beam on the surface melting of IN718 superalloy prepared with selective laser melting

Min Min, Shuiting Ding, Xiao Yu, Shijian Zhang, Haowen Zhong, Gennady Efimovich Remnev, Xiaoyun Le, Yu Zhou

Research output: Contribution to journalArticle

Abstract

Intense pulsed ion beam irradiation on IN718 superalloy prepared with selective laser melting as an after-treatment for surface melting is introduced. It is demonstrated that intense pulsed ion beam composed of protons and carbon ions, with a maximum current density of 200 A/cm2 and a pulse length of 80 ns, can induce surface melting and the surface roughness changes significantly due to the generation of micro-defects and the flow of the molten surface. Irradiation experiments and thermal field simulation revealed that the energy density of the ion beam plays a predominant role in the irradiation effect—with low energy density, the flow of molten surface is too weak to smooth the fluctuations on the surface. With high energy density, the surface can be effectively melted and smoothened while micro-defects, such as craters, may be generated and can be flattened by an increased number of pulses. The research verified that for the surface melting with intense pulsed ion beam (IPIB), higher energy density should be used for stronger surface fluidity and a greater pulse number is also required for the curing of surface micro-defects.

Original languageEnglish
Article number1178
Pages (from-to)1-10
Number of pages10
JournalMetals
Volume10
Issue number9
DOIs
Publication statusPublished - Sep 2020

Keywords

  • Intense pulsed ion beam
  • Selective laser melting
  • Superalloy
  • Surface melting
  • Surface roughness

ASJC Scopus subject areas

  • Materials Science(all)

Fingerprint Dive into the research topics of 'Investigation of the effects of an intense pulsed ion beam on the surface melting of IN718 superalloy prepared with selective laser melting'. Together they form a unique fingerprint.

  • Cite this