Interannual variability of air-sea CO2 fluxes and carbon system in the East Siberian Sea

I. I. Pipko, I. P. Semiletov, S. P. Pugach, I. Wählstrãm, L. G. Anderson

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

Over the past couple of decades it has become apparent that air-land-sea interactions in the Arctic have a substantial impact on the composition of the overlying atmosphere (ACIA, 2004). The Arctic Ocean is small (only ∼4 % of the total World Ocean), but it is surrounded by offshore and onshore permafrost which is thawing at increasing rates under warming conditions, releasing carbon dioxide (CO2) into the water and atmosphere. The Arctic Ocean shelf where the most intensive biogeochemical processes have occurred occupies 1/3 of the ocean. The East Siberian Sea (ESS) shelf is the shallowest and widest shelf among the Arctic seas, and the least studied. The objective of this study was to highlight the importance of different factors that impact the carbon system (CS) as well as the CO2 flux dynamics in the ESS. CS variables were measured in the ESS in September 2003 and, 2004 and in late August-September 2008. It was shown that the western part of the ESS represents a river-and coastal-erosion-dominated heterotrophic ocean margin that is a source for atmospheric CO2. The eastern part of the ESS is a Pacific-water-dominated autotrophic area, which acts as a sink for atmospheric CO2. Our results indicate that the year-to-year dynamics of the partial pressure of CO2 in the surface water as well as the air-sea flux of CO2 varies substantially. In one year the ESS shelf was mainly heterotrophic and served as a moderate summertime source of CO 2 (year 2004). In another year gross primary production exceeded community respiration in a relatively large part of the ESS and the ESS shelf was only a weak source of CO2 into the atmosphere (year 2008). It was shown that many factors impact the CS and CO2 flux dynamics (such as river runoff, coastal erosion, primary production/respiration, etc.), but they were mainly determined by the interplay and distribution of water masses that are basically influenced by the atmospheric circulation. In this contribution the air-sea CO2 fluxes were evaluated in the ESS based on measured CS characteristics, and summertime fluxes were estimated. It was shown that the total ESS shelf is a net source of CO2 for the atmosphere in a range of 0.4×1012 to 2.3×1012 g C.

Original languageEnglish
Pages (from-to)1987-2007
Number of pages21
JournalBiogeosciences
Volume8
Issue number7
DOIs
Publication statusPublished - 2011
Externally publishedYes

Fingerprint

carbon dioxide
air
carbon
shelf sea
Arctic region
coastal erosion
atmosphere
oceans
primary production
ocean
respiration
land-sea interaction
sea
atmospheric circulation
thawing
partial pressure
rivers
river
permafrost
water mass

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Earth-Surface Processes

Cite this

Interannual variability of air-sea CO2 fluxes and carbon system in the East Siberian Sea. / Pipko, I. I.; Semiletov, I. P.; Pugach, S. P.; Wählstrãm, I.; Anderson, L. G.

In: Biogeosciences, Vol. 8, No. 7, 2011, p. 1987-2007.

Research output: Contribution to journalArticle

Pipko, I. I. ; Semiletov, I. P. ; Pugach, S. P. ; Wählstrãm, I. ; Anderson, L. G. / Interannual variability of air-sea CO2 fluxes and carbon system in the East Siberian Sea. In: Biogeosciences. 2011 ; Vol. 8, No. 7. pp. 1987-2007.
@article{2efe2787e1e04a3c99fb6c101ef90c5c,
title = "Interannual variability of air-sea CO2 fluxes and carbon system in the East Siberian Sea",
abstract = "Over the past couple of decades it has become apparent that air-land-sea interactions in the Arctic have a substantial impact on the composition of the overlying atmosphere (ACIA, 2004). The Arctic Ocean is small (only ∼4 {\%} of the total World Ocean), but it is surrounded by offshore and onshore permafrost which is thawing at increasing rates under warming conditions, releasing carbon dioxide (CO2) into the water and atmosphere. The Arctic Ocean shelf where the most intensive biogeochemical processes have occurred occupies 1/3 of the ocean. The East Siberian Sea (ESS) shelf is the shallowest and widest shelf among the Arctic seas, and the least studied. The objective of this study was to highlight the importance of different factors that impact the carbon system (CS) as well as the CO2 flux dynamics in the ESS. CS variables were measured in the ESS in September 2003 and, 2004 and in late August-September 2008. It was shown that the western part of the ESS represents a river-and coastal-erosion-dominated heterotrophic ocean margin that is a source for atmospheric CO2. The eastern part of the ESS is a Pacific-water-dominated autotrophic area, which acts as a sink for atmospheric CO2. Our results indicate that the year-to-year dynamics of the partial pressure of CO2 in the surface water as well as the air-sea flux of CO2 varies substantially. In one year the ESS shelf was mainly heterotrophic and served as a moderate summertime source of CO 2 (year 2004). In another year gross primary production exceeded community respiration in a relatively large part of the ESS and the ESS shelf was only a weak source of CO2 into the atmosphere (year 2008). It was shown that many factors impact the CS and CO2 flux dynamics (such as river runoff, coastal erosion, primary production/respiration, etc.), but they were mainly determined by the interplay and distribution of water masses that are basically influenced by the atmospheric circulation. In this contribution the air-sea CO2 fluxes were evaluated in the ESS based on measured CS characteristics, and summertime fluxes were estimated. It was shown that the total ESS shelf is a net source of CO2 for the atmosphere in a range of 0.4×1012 to 2.3×1012 g C.",
author = "Pipko, {I. I.} and Semiletov, {I. P.} and Pugach, {S. P.} and I. W{\"a}hlstr{\~a}m and Anderson, {L. G.}",
year = "2011",
doi = "10.5194/bg-8-1987-2011",
language = "English",
volume = "8",
pages = "1987--2007",
journal = "Biogeosciences",
issn = "1726-4170",
publisher = "European Geosciences Union",
number = "7",

}

TY - JOUR

T1 - Interannual variability of air-sea CO2 fluxes and carbon system in the East Siberian Sea

AU - Pipko, I. I.

AU - Semiletov, I. P.

AU - Pugach, S. P.

AU - Wählstrãm, I.

AU - Anderson, L. G.

PY - 2011

Y1 - 2011

N2 - Over the past couple of decades it has become apparent that air-land-sea interactions in the Arctic have a substantial impact on the composition of the overlying atmosphere (ACIA, 2004). The Arctic Ocean is small (only ∼4 % of the total World Ocean), but it is surrounded by offshore and onshore permafrost which is thawing at increasing rates under warming conditions, releasing carbon dioxide (CO2) into the water and atmosphere. The Arctic Ocean shelf where the most intensive biogeochemical processes have occurred occupies 1/3 of the ocean. The East Siberian Sea (ESS) shelf is the shallowest and widest shelf among the Arctic seas, and the least studied. The objective of this study was to highlight the importance of different factors that impact the carbon system (CS) as well as the CO2 flux dynamics in the ESS. CS variables were measured in the ESS in September 2003 and, 2004 and in late August-September 2008. It was shown that the western part of the ESS represents a river-and coastal-erosion-dominated heterotrophic ocean margin that is a source for atmospheric CO2. The eastern part of the ESS is a Pacific-water-dominated autotrophic area, which acts as a sink for atmospheric CO2. Our results indicate that the year-to-year dynamics of the partial pressure of CO2 in the surface water as well as the air-sea flux of CO2 varies substantially. In one year the ESS shelf was mainly heterotrophic and served as a moderate summertime source of CO 2 (year 2004). In another year gross primary production exceeded community respiration in a relatively large part of the ESS and the ESS shelf was only a weak source of CO2 into the atmosphere (year 2008). It was shown that many factors impact the CS and CO2 flux dynamics (such as river runoff, coastal erosion, primary production/respiration, etc.), but they were mainly determined by the interplay and distribution of water masses that are basically influenced by the atmospheric circulation. In this contribution the air-sea CO2 fluxes were evaluated in the ESS based on measured CS characteristics, and summertime fluxes were estimated. It was shown that the total ESS shelf is a net source of CO2 for the atmosphere in a range of 0.4×1012 to 2.3×1012 g C.

AB - Over the past couple of decades it has become apparent that air-land-sea interactions in the Arctic have a substantial impact on the composition of the overlying atmosphere (ACIA, 2004). The Arctic Ocean is small (only ∼4 % of the total World Ocean), but it is surrounded by offshore and onshore permafrost which is thawing at increasing rates under warming conditions, releasing carbon dioxide (CO2) into the water and atmosphere. The Arctic Ocean shelf where the most intensive biogeochemical processes have occurred occupies 1/3 of the ocean. The East Siberian Sea (ESS) shelf is the shallowest and widest shelf among the Arctic seas, and the least studied. The objective of this study was to highlight the importance of different factors that impact the carbon system (CS) as well as the CO2 flux dynamics in the ESS. CS variables were measured in the ESS in September 2003 and, 2004 and in late August-September 2008. It was shown that the western part of the ESS represents a river-and coastal-erosion-dominated heterotrophic ocean margin that is a source for atmospheric CO2. The eastern part of the ESS is a Pacific-water-dominated autotrophic area, which acts as a sink for atmospheric CO2. Our results indicate that the year-to-year dynamics of the partial pressure of CO2 in the surface water as well as the air-sea flux of CO2 varies substantially. In one year the ESS shelf was mainly heterotrophic and served as a moderate summertime source of CO 2 (year 2004). In another year gross primary production exceeded community respiration in a relatively large part of the ESS and the ESS shelf was only a weak source of CO2 into the atmosphere (year 2008). It was shown that many factors impact the CS and CO2 flux dynamics (such as river runoff, coastal erosion, primary production/respiration, etc.), but they were mainly determined by the interplay and distribution of water masses that are basically influenced by the atmospheric circulation. In this contribution the air-sea CO2 fluxes were evaluated in the ESS based on measured CS characteristics, and summertime fluxes were estimated. It was shown that the total ESS shelf is a net source of CO2 for the atmosphere in a range of 0.4×1012 to 2.3×1012 g C.

UR - http://www.scopus.com/inward/record.url?scp=84884676253&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84884676253&partnerID=8YFLogxK

U2 - 10.5194/bg-8-1987-2011

DO - 10.5194/bg-8-1987-2011

M3 - Article

VL - 8

SP - 1987

EP - 2007

JO - Biogeosciences

JF - Biogeosciences

SN - 1726-4170

IS - 7

ER -