Intelligent UAV deployment for a disaster-resilient wireless network

Hassaan Hydher, Dushantha Nalin K. Jayakody, Kasun T. Hemachandra, Tharaka Samarasinghe

Research output: Contribution to journalArticlepeer-review

Abstract

Deployment of unmanned aerial vehicles (UAVs) as aerial base stations (ABSs) has been considered to be a feasible solution to provide network coverage in scenarios where the conventional terrestrial network is overloaded or inaccessible due to an emergency situation. This article studies the problem of optimal placement of the UAVs as ABSs to enable network connectivity for the users in such a scenario. The main contributions of this work include a less complex approach to optimally position the UAVs and to assign user equipment (UE) to each ABS, such that the total spectral efficiency (TSE) of the network is maximized, while maintaining a minimum QoS requirement for the UEs. The main advantage of the proposed approach is that it only requires the knowledge of UE and ABS locations and statistical channel state information. The optimal 2-dimensional (2D) positions of the ABSs and the UE assignments are found using K-means clustering and a stable marriage approach, considering the characteristics of the air-to-ground propagation channels, the impact of co-channel interference from other ABSs, and the energy constraints of the ABSs. Two approaches are proposed to find the optimal altitudes of the ABSs, using search space constrained exhaustive search and particle swarm optimization (PSO). The numerical results show that the PSO-based approach results in higher TSE compared to the exhaustive search-based approach in dense networks, consuming similar amount of energy for ABS movements. Both approaches lead up to approximately 8-fold energy savings compared to ABS placement using naive exhaustive search.

Original languageEnglish
Article number6140
Pages (from-to)1-18
Number of pages18
JournalSensors (Switzerland)
Volume20
Issue number21
DOIs
Publication statusPublished - 1 Nov 2020

Keywords

  • Aerial base station
  • Average spectral efficiency
  • Interference mitigation
  • Particle swarm optimization
  • Unmanned aerial vehicles

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry
  • Atomic and Molecular Physics, and Optics
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Intelligent UAV deployment for a disaster-resilient wireless network'. Together they form a unique fingerprint.

Cite this