Influence of nuclides and chelators on imaging using affibody molecules: Comparative evaluation of recombinant affibody molecules site-specifically labeled with 68Ga and 111In via maleimido derivatives of DOTA and NODAGA

Mohamed Altai, Joanna Strand, Daniel Rosik, Ram Kumar Selvaraju, Amelie Eriksson Karlström, Anna Orlova, Vladimir Tolmachev

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)

Abstract

Accurate detection of cancer-associated molecular abnormalities in tumors could make cancer treatment more personalized. Affibody molecules enable high contrast imaging of tumor-associated protein expression shortly after injection. The use of the generator-produced positron-emitting radionuclide 68Ga should increase sensitivity of HER2 imaging. The chemical nature of radionuclides and chelators influences the biodistribution of Affibody molecules, providing an opportunity to further increase the imaging contrast. The aim of the study was to compare maleimido derivatives of DOTA and NODAGA for site-specific labeling of a recombinant ZHER2:2395 HER2-binding Affibody molecule with 68Ga. DOTA and NODAGA were site-specifically conjugated to the ZHER2:2395 Affibody molecule having a C-terminal cysteine and labeled with 68Ga and 111In. All labeled conjugates retained specificity to HER2 in vitro. Most of the cell-associated activity was membrane-bound with a minor difference in internalization rate. All variants demonstrated specific targeting of xenografts and a high tumor uptake. The xenografts were clearly visualized using all conjugates. The influence of chelator on the biodistribution and targeting properties was much less pronounced for 68Ga than for 111In. The tumor uptake of 68Ga-NODAGA-ZHER2:2395 and 68Ga-DOTA-Z HER2:2395 and tumor-to-blood ratios at 2 h p.i. did not differ significantly. However, the tumor-to-liver ratio was significantly higher for 68Ga-NODAGA- ZHER2:2395 (8 ± 2 vs 5.0 ± 0.3) offering the advantage of better liver metastases visualization. In conclusion, influence of chelators on biodistribution of Affibody molecules depends on the radionuclides and reoptimization of labeling chemistry is required when a radionuclide label is changed.

Original languageEnglish
Pages (from-to)1102-1109
Number of pages8
JournalBioconjugate Chemistry
Volume24
Issue number6
DOIs
Publication statusPublished - 19 Jun 2013
Externally publishedYes

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Biomedical Engineering
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry

Fingerprint Dive into the research topics of 'Influence of nuclides and chelators on imaging using affibody molecules: Comparative evaluation of recombinant affibody molecules site-specifically labeled with <sup>68</sup>Ga and <sup>111</sup>In via maleimido derivatives of DOTA and NODAGA'. Together they form a unique fingerprint.

Cite this