Influence of Al2O3 addition on microstructure, defects level and magnetic properties of LiTiZn ferrite ceramics

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

In the present work, the results of the influence of diamagnetic additives on the defects level of ferrite ceramics, its microstructure and magnetic properties are presented. A method based on a mathematical analysis of the experimental temperature dependences of the initial permeability was used for estimation of the defects level in the samples. Model samples containing a controlled amount of the diamagnetic additive Al2O3 served to test the possibility of monitoring this method of nonmagnetic phases of ferrite ceramics. It was shown that with an increase in the concentration of the Al2O3 additive in the range of (0–0.5) wt%, a significant increase in the defects level was observed almost 6-fold. The data from SEM micrographs showed that the addition of Al2O3 affects the type of grains of ferrite ceramics, but does not affect their grain size. Grains are highly agglomerated and show large grain size dispersion and also pore. Obtained data were compared to hysteresis loop parameters. It is shown that with an increase in the concentration of the Al2O3 addition, there is a regular decrease in the residual induction and an increase in the coercive force. However, such changes in hysteresis loop parameters are small in comparison to defects level. Investigations of the true physical broadening of the diffraction reflections were performed for the same model samples in order to compare the change in the defects level to the direct X-ray diffraction measurements of micro deformations. The defects level as a characteristic of the elastic stress of a ferrite ceramics is proposed. This assumption follows from a linear relationship between the defects level and the width of the diffraction reflections. The consistency of the obtained results made it possible to evaluate the high efficiency and sensitivity of the method for defects level estimating.

Original languageEnglish
Pages (from-to)20749-20754
Number of pages6
JournalCeramics International
Volume44
Issue number17
DOIs
Publication statusPublished - 1 Dec 2018

Keywords

  • A. Sintering
  • B. Defects
  • C. Magnetic properties
  • D. Ferrites

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Process Chemistry and Technology
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Influence of Al<sub>2</sub>O<sub>3</sub> addition on microstructure, defects level and magnetic properties of LiTiZn ferrite ceramics'. Together they form a unique fingerprint.

  • Cite this