Ignition by laser radiation and combustion of composite solid propellants with bimetal powders

A. G. Korotkikh, V. A. Arkhipov, O. G. Glotov, Nikolay Zolotorev

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


The use of metal powder (usually aluminum) as a fuel in composite solid propellants (CSPs) for propulsion is the most energy efficient method that allows improvement of combustion characteristics of propellants in the combustion chamber and specific impulse. This paper presents the experimental data of the ignition and combustion processes of CSPs containing Alex aluminum nanopowder and mixtures of Alex/Fe and Alex/B nanopowders. It was found that the introduction of Alex/Fe in CSPs leads to 1.3-1.9 times decrease in the ignition time at q = 55-220 W/cm2 and to 1.3-1.4 times increase in the burning rate at p = 2.2-7.5 MPa with respect to that for basic CSP with Alex. When introducing Alex/B in CSP, the ignition times are 1.2-1.4 fold decreased, and the burning rate is practically unchanged. However, the agglomeration is significantly enhanced, which is manifested through the increase in the agglomerate particles content in condensed combustion products by a factor of 1.8-2.2, at 1.6-1.7 fold increase of the agglomerates mean diameter for CSP with Alex/B.

Original languageEnglish
Article number012137
JournalJournal of Physics: Conference Series
Issue number1
Publication statusPublished - 4 May 2017
Event5th International Congress on Energy Fluxes and Radiation Effects 2016, EFRE 2016 - Tomsk, Russian Federation
Duration: 2 Oct 20167 Oct 2016

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Ignition by laser radiation and combustion of composite solid propellants with bimetal powders'. Together they form a unique fingerprint.

Cite this