Abstract
Fatigue testing of ultrafine-grained, fine-grained and coarse-grained VT1-0 and Zr-1 wt. % Nb samples was performed under conditions of gigacycle fatigue regime. It was established that ultrafine-grained titanium and zirconium alloy samples initiate increasing fatigue strength of up to 1.3 times for titanium and 1.7 times for zirconium alloy within gigacycle region (109 cycles) comparable to fine-grained and coarse-grained samples. Analysis of fracture surface morphology has revealed the similar fractured structure in coarse-grained and ultrafine-grained titanium and zirconium alloy samples. Fractures in ultrafine-grained titanium and zirconium alloy samples exhibit quasi-brittle pattern.
Original language | English |
---|---|
Title of host publication | Proceedings of the Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures |
Editors | Vasily M. Fomin, Victor E. Panin, Sergey G. Psakhie |
Publisher | American Institute of Physics Inc. |
Volume | 2051 |
ISBN (Electronic) | 9780735417779 |
DOIs | |
Publication status | Published - 12 Dec 2018 |
Event | International Symposium on Hierarchical Materials: Development and Applications for New Technologies and Reliable Structures 2018 - Tomsk, Russian Federation Duration: 1 Oct 2018 → 5 Oct 2018 |
Conference
Conference | International Symposium on Hierarchical Materials: Development and Applications for New Technologies and Reliable Structures 2018 |
---|---|
Country | Russian Federation |
City | Tomsk |
Period | 1.10.18 → 5.10.18 |
ASJC Scopus subject areas
- Physics and Astronomy(all)