TY - JOUR
T1 - Fibro/chondrogenic differentiation of dental stem cells into chitosan/alginate scaffolds towards temporomandibular joint disc regeneration
AU - Bousnaki, Maria
AU - Bakopoulou, Athina
AU - Papadogianni, Danai
AU - Barkoula, Nektaria Marianthi
AU - Alpantaki, Kalliopi
AU - Kritis, Aristidis
AU - Chatzinikolaidou, Maria
AU - Koidis, Petros
N1 - Funding Information:
Acknowledgements This study was supported by a scholarship from the Greek State Scholarship Foundation (IKY), funded by the action “Enhancing human research potential through doctoral research” from resources of the European Program “Development of Human Potential, Education and Lifelong Learning”, 2014–2020 funded by the European Social Fund (ESF) and National Resources (MIS 5000432).
Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2018/7/1
Y1 - 2018/7/1
N2 - Tissue engineering (TE) may provide effective alternative treatment for challenging temporomandibular joint (TMJ) pathologies associated with disc malpositioning or degeneration and leading to severe masticatory dysfunction. Aim of this study was to evaluate the potential of chitosan/alginate (Ch/Alg) scaffolds to promote fibro/chondrogenic differentiation of dental pulp stem cells (DPSCs) and production of fibrocartilage tissue, serving as a replacement of the natural TMJ disc. Ch/Alg scaffolds were fabricated by crosslinking with CaCl2 combined or not with glutaraldehyde, resulting in two scaffold types that were physicochemically characterized, seeded with DPSCs or human nucleus pulposus cells (hNPCs) used as control and evaluated for cell attachment, viability, and proliferation. The DPSCs/scaffold constructs were incubated for up to 8 weeks and assessed for extracellular matrix production by means of histology, immunofluorescence, and thermomechanical analysis. Both Ch/Alg scaffold types with a mass ratio of 1:1 presented a gel-like structure with interconnected pores. Scaffolds supported cell adhesion and long-term viability/proliferation of DPSCs and hNPCs. DPSCs cultured into Ch/Alg scaffolds demonstrated a significant increase of gene expression of fibrocartilaginous markers (COLI, COL X, SOX9, COM, ACAN) after up to 3 weeks in culture. Dynamic thermomechanical analysis revealed that scaffolds loaded with DPSCs significantly increased storage modulus and elastic response compared to cell-free scaffolds, obtaining values similar to those of native TMJ disc. Histological data and immunochemical staining for aggrecan after 4 to 8 weeks indicated that the scaffolds support abundant fibrocartilaginous tissue formation, thus providing a promising strategy for TMJ disc TE-based replacement. [Figure not available: see fulltext.].
AB - Tissue engineering (TE) may provide effective alternative treatment for challenging temporomandibular joint (TMJ) pathologies associated with disc malpositioning or degeneration and leading to severe masticatory dysfunction. Aim of this study was to evaluate the potential of chitosan/alginate (Ch/Alg) scaffolds to promote fibro/chondrogenic differentiation of dental pulp stem cells (DPSCs) and production of fibrocartilage tissue, serving as a replacement of the natural TMJ disc. Ch/Alg scaffolds were fabricated by crosslinking with CaCl2 combined or not with glutaraldehyde, resulting in two scaffold types that were physicochemically characterized, seeded with DPSCs or human nucleus pulposus cells (hNPCs) used as control and evaluated for cell attachment, viability, and proliferation. The DPSCs/scaffold constructs were incubated for up to 8 weeks and assessed for extracellular matrix production by means of histology, immunofluorescence, and thermomechanical analysis. Both Ch/Alg scaffold types with a mass ratio of 1:1 presented a gel-like structure with interconnected pores. Scaffolds supported cell adhesion and long-term viability/proliferation of DPSCs and hNPCs. DPSCs cultured into Ch/Alg scaffolds demonstrated a significant increase of gene expression of fibrocartilaginous markers (COLI, COL X, SOX9, COM, ACAN) after up to 3 weeks in culture. Dynamic thermomechanical analysis revealed that scaffolds loaded with DPSCs significantly increased storage modulus and elastic response compared to cell-free scaffolds, obtaining values similar to those of native TMJ disc. Histological data and immunochemical staining for aggrecan after 4 to 8 weeks indicated that the scaffolds support abundant fibrocartilaginous tissue formation, thus providing a promising strategy for TMJ disc TE-based replacement. [Figure not available: see fulltext.].
UR - http://www.scopus.com/inward/record.url?scp=85049320090&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85049320090&partnerID=8YFLogxK
U2 - 10.1007/s10856-018-6109-6
DO - 10.1007/s10856-018-6109-6
M3 - Article
C2 - 29946796
AN - SCOPUS:85049320090
VL - 29
JO - Journal of Materials Science: Materials in Electronics
JF - Journal of Materials Science: Materials in Electronics
SN - 0957-4530
IS - 7
M1 - 97
ER -