Extended analysis of the high resolution FTIR spectra of H2 MS (M=32,33,34,36) in the region of the bending fundamental band: The ν2 and 2ν2−ν2 bands: Line positions, strengths, and pressure broadening widths

O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, P. A. Glushkov, A. P. Scherbakov, V. M. Horneman, C. Sydow, C. Maul, S. Bauerecker

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

The high resolution infrared spectra of hydrogen sulfide, H2 MS (M=32,33,34,36) in the natural abundance (95.041% of H2 32S, 0.748% of H2 33S, 4.196% of H2 34S and 0.015% of H2 36S), were recorded with a Bruker IFS 125HR Fourier transform infrared spectrometer (Zürich prototype ZP2001) and analyzed in the ν2 fundamental band region (700 – 1800 cm−1). In the experimental spectra 1564, 1019, and 685 transitions were assigned to the ν2 bands of H2 32S, H2 34S and H2 33S (the maximum values of the quantum numbers are Jmax./Ka max. = 24/17, 20/14, 17/14). The subsequent weighted fits of experimentally assigned transitions were made with the Watson Hamiltonian and a set of parameters which reproduces the initial 333/249/216 infrared ro-vibrational energy values has been obtained from the assigned experimental line positions with the root mean square deviations of drms=2.2×10−4 cm−1, 1.7×10−4 cm−1 and 1.5×10−4 cm−1 for the H2 32S, H2 34S and H2 33S isotopologues. Additionally, 703, 182 and 23 transitions with the values of quantum numbers Jmax./Ka max. = 18/14, 14/8 and 9/6 belonging to the 2ν2−ν2 hot bands of H2 32S, H2 34S and H2 33S (for the first time for the hot bands of the H2 34S and H2 33S species) were assigned in the experimental spectra. Rotational parameters of the ground vibrational state of H2 36S were re-determined, and, for the first time, 103 transitions (Jmax.=11, Ka max.=8) of the ν2 band of H2 36S were assigned in the experimental spectra. An analysis of ro-vibrational line strengths of 61 experimental isolated unsaturated and not too weak lines of the ν2 band of H2 32S was made (Jmax.=9, Ka max.=8), and five effective dipole moment parameters were obtained from the fit which reproduce the initial experimental line intensities with the drms = 1.4 %. An analogous analysis was performed for the H2 34S and H2 33S isotopologues. The half-widths analysis was made on the basis of the multi-spectrum fit with the Hartmann-Tran line profile, and self-pressure broadening coefficients were estimated for a few tens of lines for the three most abundant isotopologues.

Original languageEnglish
Pages (from-to)76-98
Number of pages23
JournalJournal of Quantitative Spectroscopy and Radiative Transfer
Volume216
DOIs
Publication statusPublished - 1 Sep 2018

Fingerprint

pressure broadening
Infrared radiation
Hamiltonians
Hydrogen Sulfide
Infrared spectrometers
high resolution
Dipole moment
Fourier transforms
quantum numbers
hydrogen sulfide
infrared spectrometers
vibrational states
dipole moments
infrared spectra
prototypes
deviation
coefficients
profiles

ASJC Scopus subject areas

  • Radiation
  • Atomic and Molecular Physics, and Optics
  • Spectroscopy

Cite this

@article{2a36049c5d2c450a88aad93d77481d31,
title = "Extended analysis of the high resolution FTIR spectra of H2 MS (M=32,33,34,36) in the region of the bending fundamental band: The ν2 and 2ν2−ν2 bands: Line positions, strengths, and pressure broadening widths",
abstract = "The high resolution infrared spectra of hydrogen sulfide, H2 MS (M=32,33,34,36) in the natural abundance (95.041{\%} of H2 32S, 0.748{\%} of H2 33S, 4.196{\%} of H2 34S and 0.015{\%} of H2 36S), were recorded with a Bruker IFS 125HR Fourier transform infrared spectrometer (Z{\"u}rich prototype ZP2001) and analyzed in the ν2 fundamental band region (700 – 1800 cm−1). In the experimental spectra 1564, 1019, and 685 transitions were assigned to the ν2 bands of H2 32S, H2 34S and H2 33S (the maximum values of the quantum numbers are Jmax./Ka max. = 24/17, 20/14, 17/14). The subsequent weighted fits of experimentally assigned transitions were made with the Watson Hamiltonian and a set of parameters which reproduces the initial 333/249/216 infrared ro-vibrational energy values has been obtained from the assigned experimental line positions with the root mean square deviations of drms=2.2×10−4 cm−1, 1.7×10−4 cm−1 and 1.5×10−4 cm−1 for the H2 32S, H2 34S and H2 33S isotopologues. Additionally, 703, 182 and 23 transitions with the values of quantum numbers Jmax./Ka max. = 18/14, 14/8 and 9/6 belonging to the 2ν2−ν2 hot bands of H2 32S, H2 34S and H2 33S (for the first time for the hot bands of the H2 34S and H2 33S species) were assigned in the experimental spectra. Rotational parameters of the ground vibrational state of H2 36S were re-determined, and, for the first time, 103 transitions (Jmax.=11, Ka max.=8) of the ν2 band of H2 36S were assigned in the experimental spectra. An analysis of ro-vibrational line strengths of 61 experimental isolated unsaturated and not too weak lines of the ν2 band of H2 32S was made (Jmax.=9, Ka max.=8), and five effective dipole moment parameters were obtained from the fit which reproduce the initial experimental line intensities with the drms = 1.4 {\%}. An analogous analysis was performed for the H2 34S and H2 33S isotopologues. The half-widths analysis was made on the basis of the multi-spectrum fit with the Hartmann-Tran line profile, and self-pressure broadening coefficients were estimated for a few tens of lines for the three most abundant isotopologues.",
author = "Ulenikov, {O. N.} and Bekhtereva, {E. S.} and Gromova, {O. V.} and Glushkov, {P. A.} and Scherbakov, {A. P.} and Horneman, {V. M.} and C. Sydow and C. Maul and S. Bauerecker",
year = "2018",
month = "9",
day = "1",
doi = "10.1016/j.jqsrt.2018.05.009",
language = "English",
volume = "216",
pages = "76--98",
journal = "Journal of Quantitative Spectroscopy and Radiative Transfer",
issn = "0022-4073",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Extended analysis of the high resolution FTIR spectra of H2 MS (M=32,33,34,36) in the region of the bending fundamental band

T2 - The ν2 and 2ν2−ν2 bands: Line positions, strengths, and pressure broadening widths

AU - Ulenikov, O. N.

AU - Bekhtereva, E. S.

AU - Gromova, O. V.

AU - Glushkov, P. A.

AU - Scherbakov, A. P.

AU - Horneman, V. M.

AU - Sydow, C.

AU - Maul, C.

AU - Bauerecker, S.

PY - 2018/9/1

Y1 - 2018/9/1

N2 - The high resolution infrared spectra of hydrogen sulfide, H2 MS (M=32,33,34,36) in the natural abundance (95.041% of H2 32S, 0.748% of H2 33S, 4.196% of H2 34S and 0.015% of H2 36S), were recorded with a Bruker IFS 125HR Fourier transform infrared spectrometer (Zürich prototype ZP2001) and analyzed in the ν2 fundamental band region (700 – 1800 cm−1). In the experimental spectra 1564, 1019, and 685 transitions were assigned to the ν2 bands of H2 32S, H2 34S and H2 33S (the maximum values of the quantum numbers are Jmax./Ka max. = 24/17, 20/14, 17/14). The subsequent weighted fits of experimentally assigned transitions were made with the Watson Hamiltonian and a set of parameters which reproduces the initial 333/249/216 infrared ro-vibrational energy values has been obtained from the assigned experimental line positions with the root mean square deviations of drms=2.2×10−4 cm−1, 1.7×10−4 cm−1 and 1.5×10−4 cm−1 for the H2 32S, H2 34S and H2 33S isotopologues. Additionally, 703, 182 and 23 transitions with the values of quantum numbers Jmax./Ka max. = 18/14, 14/8 and 9/6 belonging to the 2ν2−ν2 hot bands of H2 32S, H2 34S and H2 33S (for the first time for the hot bands of the H2 34S and H2 33S species) were assigned in the experimental spectra. Rotational parameters of the ground vibrational state of H2 36S were re-determined, and, for the first time, 103 transitions (Jmax.=11, Ka max.=8) of the ν2 band of H2 36S were assigned in the experimental spectra. An analysis of ro-vibrational line strengths of 61 experimental isolated unsaturated and not too weak lines of the ν2 band of H2 32S was made (Jmax.=9, Ka max.=8), and five effective dipole moment parameters were obtained from the fit which reproduce the initial experimental line intensities with the drms = 1.4 %. An analogous analysis was performed for the H2 34S and H2 33S isotopologues. The half-widths analysis was made on the basis of the multi-spectrum fit with the Hartmann-Tran line profile, and self-pressure broadening coefficients were estimated for a few tens of lines for the three most abundant isotopologues.

AB - The high resolution infrared spectra of hydrogen sulfide, H2 MS (M=32,33,34,36) in the natural abundance (95.041% of H2 32S, 0.748% of H2 33S, 4.196% of H2 34S and 0.015% of H2 36S), were recorded with a Bruker IFS 125HR Fourier transform infrared spectrometer (Zürich prototype ZP2001) and analyzed in the ν2 fundamental band region (700 – 1800 cm−1). In the experimental spectra 1564, 1019, and 685 transitions were assigned to the ν2 bands of H2 32S, H2 34S and H2 33S (the maximum values of the quantum numbers are Jmax./Ka max. = 24/17, 20/14, 17/14). The subsequent weighted fits of experimentally assigned transitions were made with the Watson Hamiltonian and a set of parameters which reproduces the initial 333/249/216 infrared ro-vibrational energy values has been obtained from the assigned experimental line positions with the root mean square deviations of drms=2.2×10−4 cm−1, 1.7×10−4 cm−1 and 1.5×10−4 cm−1 for the H2 32S, H2 34S and H2 33S isotopologues. Additionally, 703, 182 and 23 transitions with the values of quantum numbers Jmax./Ka max. = 18/14, 14/8 and 9/6 belonging to the 2ν2−ν2 hot bands of H2 32S, H2 34S and H2 33S (for the first time for the hot bands of the H2 34S and H2 33S species) were assigned in the experimental spectra. Rotational parameters of the ground vibrational state of H2 36S were re-determined, and, for the first time, 103 transitions (Jmax.=11, Ka max.=8) of the ν2 band of H2 36S were assigned in the experimental spectra. An analysis of ro-vibrational line strengths of 61 experimental isolated unsaturated and not too weak lines of the ν2 band of H2 32S was made (Jmax.=9, Ka max.=8), and five effective dipole moment parameters were obtained from the fit which reproduce the initial experimental line intensities with the drms = 1.4 %. An analogous analysis was performed for the H2 34S and H2 33S isotopologues. The half-widths analysis was made on the basis of the multi-spectrum fit with the Hartmann-Tran line profile, and self-pressure broadening coefficients were estimated for a few tens of lines for the three most abundant isotopologues.

UR - http://www.scopus.com/inward/record.url?scp=85047607549&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85047607549&partnerID=8YFLogxK

U2 - 10.1016/j.jqsrt.2018.05.009

DO - 10.1016/j.jqsrt.2018.05.009

M3 - Article

AN - SCOPUS:85047607549

VL - 216

SP - 76

EP - 98

JO - Journal of Quantitative Spectroscopy and Radiative Transfer

JF - Journal of Quantitative Spectroscopy and Radiative Transfer

SN - 0022-4073

ER -