Entanglement in a quantum annealing processor

T. Lanting, A. J. Przybysz, A. Yu Smirnov, F. M. Spedalieri, M. H. Amin, A. J. Berkley, R. Harris, F. Altomare, S. Boixo, P. Bunyk, N. Dickson, C. Enderud, J. P. Hilton, E. Hoskinson, M. W. Johnson, E. Ladizinsky, N. Ladizinsky, R. Neufeld, T. Oh, I. Perminov & 6 others C. Rich, M. C. Thom, E. Tolkacheva, S. Uchaikin, A. B. Wilson, G. Rose

Research output: Contribution to journalArticle

129 Citations (Scopus)

Abstract

Entanglement lies at the core of quantum algorithms designed to solve problems that are intractable by classical approaches. One such algorithm, quantum annealing (QA), provides a promising path to a practical quantum processor. We have built a series of architecturally scalable QA processors consisting of networks of manufactured interacting spins (qubits). Here, we use qubit tunneling spectroscopy to measure the energy eigenspectrum of two- and eight-qubit systems within one such processor, demonstrating quantum coherence in these systems. We present experimental evidence that, during a critical portion of QA, the qubits become entangled and entanglement persists even as these systems reach equilibrium with a thermal environment. Our results provide an encouraging sign that QA is a viable technology for largescale quantum computing.

Original languageEnglish
Article number021041
JournalPhysical Review X
Volume4
Issue number2
DOIs
Publication statusPublished - 2014

Fingerprint

central processing units
annealing
thermal environments
quantum computation
spectroscopy
energy

Keywords

  • Quantum information
  • Quantum physics
  • Superconductivity

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Lanting, T., Przybysz, A. J., Smirnov, A. Y., Spedalieri, F. M., Amin, M. H., Berkley, A. J., ... Rose, G. (2014). Entanglement in a quantum annealing processor. Physical Review X, 4(2), [021041]. https://doi.org/10.1103/PhysRevX.4.021041

Entanglement in a quantum annealing processor. / Lanting, T.; Przybysz, A. J.; Smirnov, A. Yu; Spedalieri, F. M.; Amin, M. H.; Berkley, A. J.; Harris, R.; Altomare, F.; Boixo, S.; Bunyk, P.; Dickson, N.; Enderud, C.; Hilton, J. P.; Hoskinson, E.; Johnson, M. W.; Ladizinsky, E.; Ladizinsky, N.; Neufeld, R.; Oh, T.; Perminov, I.; Rich, C.; Thom, M. C.; Tolkacheva, E.; Uchaikin, S.; Wilson, A. B.; Rose, G.

In: Physical Review X, Vol. 4, No. 2, 021041, 2014.

Research output: Contribution to journalArticle

Lanting, T, Przybysz, AJ, Smirnov, AY, Spedalieri, FM, Amin, MH, Berkley, AJ, Harris, R, Altomare, F, Boixo, S, Bunyk, P, Dickson, N, Enderud, C, Hilton, JP, Hoskinson, E, Johnson, MW, Ladizinsky, E, Ladizinsky, N, Neufeld, R, Oh, T, Perminov, I, Rich, C, Thom, MC, Tolkacheva, E, Uchaikin, S, Wilson, AB & Rose, G 2014, 'Entanglement in a quantum annealing processor', Physical Review X, vol. 4, no. 2, 021041. https://doi.org/10.1103/PhysRevX.4.021041
Lanting T, Przybysz AJ, Smirnov AY, Spedalieri FM, Amin MH, Berkley AJ et al. Entanglement in a quantum annealing processor. Physical Review X. 2014;4(2). 021041. https://doi.org/10.1103/PhysRevX.4.021041
Lanting, T. ; Przybysz, A. J. ; Smirnov, A. Yu ; Spedalieri, F. M. ; Amin, M. H. ; Berkley, A. J. ; Harris, R. ; Altomare, F. ; Boixo, S. ; Bunyk, P. ; Dickson, N. ; Enderud, C. ; Hilton, J. P. ; Hoskinson, E. ; Johnson, M. W. ; Ladizinsky, E. ; Ladizinsky, N. ; Neufeld, R. ; Oh, T. ; Perminov, I. ; Rich, C. ; Thom, M. C. ; Tolkacheva, E. ; Uchaikin, S. ; Wilson, A. B. ; Rose, G. / Entanglement in a quantum annealing processor. In: Physical Review X. 2014 ; Vol. 4, No. 2.
@article{4cffc26af47e43e7a8ac42a17bdfb8cc,
title = "Entanglement in a quantum annealing processor",
abstract = "Entanglement lies at the core of quantum algorithms designed to solve problems that are intractable by classical approaches. One such algorithm, quantum annealing (QA), provides a promising path to a practical quantum processor. We have built a series of architecturally scalable QA processors consisting of networks of manufactured interacting spins (qubits). Here, we use qubit tunneling spectroscopy to measure the energy eigenspectrum of two- and eight-qubit systems within one such processor, demonstrating quantum coherence in these systems. We present experimental evidence that, during a critical portion of QA, the qubits become entangled and entanglement persists even as these systems reach equilibrium with a thermal environment. Our results provide an encouraging sign that QA is a viable technology for largescale quantum computing.",
keywords = "Quantum information, Quantum physics, Superconductivity",
author = "T. Lanting and Przybysz, {A. J.} and Smirnov, {A. Yu} and Spedalieri, {F. M.} and Amin, {M. H.} and Berkley, {A. J.} and R. Harris and F. Altomare and S. Boixo and P. Bunyk and N. Dickson and C. Enderud and Hilton, {J. P.} and E. Hoskinson and Johnson, {M. W.} and E. Ladizinsky and N. Ladizinsky and R. Neufeld and T. Oh and I. Perminov and C. Rich and Thom, {M. C.} and E. Tolkacheva and S. Uchaikin and Wilson, {A. B.} and G. Rose",
year = "2014",
doi = "10.1103/PhysRevX.4.021041",
language = "English",
volume = "4",
journal = "Physical Review X",
issn = "2160-3308",
publisher = "American Physical Society",
number = "2",

}

TY - JOUR

T1 - Entanglement in a quantum annealing processor

AU - Lanting, T.

AU - Przybysz, A. J.

AU - Smirnov, A. Yu

AU - Spedalieri, F. M.

AU - Amin, M. H.

AU - Berkley, A. J.

AU - Harris, R.

AU - Altomare, F.

AU - Boixo, S.

AU - Bunyk, P.

AU - Dickson, N.

AU - Enderud, C.

AU - Hilton, J. P.

AU - Hoskinson, E.

AU - Johnson, M. W.

AU - Ladizinsky, E.

AU - Ladizinsky, N.

AU - Neufeld, R.

AU - Oh, T.

AU - Perminov, I.

AU - Rich, C.

AU - Thom, M. C.

AU - Tolkacheva, E.

AU - Uchaikin, S.

AU - Wilson, A. B.

AU - Rose, G.

PY - 2014

Y1 - 2014

N2 - Entanglement lies at the core of quantum algorithms designed to solve problems that are intractable by classical approaches. One such algorithm, quantum annealing (QA), provides a promising path to a practical quantum processor. We have built a series of architecturally scalable QA processors consisting of networks of manufactured interacting spins (qubits). Here, we use qubit tunneling spectroscopy to measure the energy eigenspectrum of two- and eight-qubit systems within one such processor, demonstrating quantum coherence in these systems. We present experimental evidence that, during a critical portion of QA, the qubits become entangled and entanglement persists even as these systems reach equilibrium with a thermal environment. Our results provide an encouraging sign that QA is a viable technology for largescale quantum computing.

AB - Entanglement lies at the core of quantum algorithms designed to solve problems that are intractable by classical approaches. One such algorithm, quantum annealing (QA), provides a promising path to a practical quantum processor. We have built a series of architecturally scalable QA processors consisting of networks of manufactured interacting spins (qubits). Here, we use qubit tunneling spectroscopy to measure the energy eigenspectrum of two- and eight-qubit systems within one such processor, demonstrating quantum coherence in these systems. We present experimental evidence that, during a critical portion of QA, the qubits become entangled and entanglement persists even as these systems reach equilibrium with a thermal environment. Our results provide an encouraging sign that QA is a viable technology for largescale quantum computing.

KW - Quantum information

KW - Quantum physics

KW - Superconductivity

UR - http://www.scopus.com/inward/record.url?scp=84903475699&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84903475699&partnerID=8YFLogxK

U2 - 10.1103/PhysRevX.4.021041

DO - 10.1103/PhysRevX.4.021041

M3 - Article

VL - 4

JO - Physical Review X

JF - Physical Review X

SN - 2160-3308

IS - 2

M1 - 021041

ER -