Elastic vortex displacements as precursors of mechanical stress relaxation in heterogeneous materials

Alexey Yu Smolin, Galina M. Eremina, Evgeny V. Shilko, Sergey G. Psakhie

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Deformation of heterogeneous material containing internal interfaces or/and free surfaces is accompanied by collective vortex motion near such boundaries. Nevertheless, such fundamental factor as elastic vortex motion in material formed during dynamic loading still remains out of the discussion. The aim of this paper is to reveal the role of vortex displacements in contact interaction of heterogeneous coatings with hard counter-body by means of 3D computer simulation using movable cellular automata. The research is mainly focused on the role of vortex structures in the velocity field in elastic and non-elastic deformation of the coating. The peculiarities of the velocity vortex formation and propagation, as well as interaction with the structural elements are studied.

Original languageEnglish
Title of host publicationAdvanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2016: Proceedings of the International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2016
Subtitle of host publicationProceedings of the International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2016
PublisherAmerican Institute of Physics Inc.
Volume1783
ISBN (Electronic)9780735414457
DOIs
Publication statusPublished - 10 Nov 2016
EventInternational Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2016 - Tomsk, Russian Federation
Duration: 19 Sep 201623 Sep 2016

Conference

ConferenceInternational Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2016
CountryRussian Federation
CityTomsk
Period19.9.1623.9.16

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Elastic vortex displacements as precursors of mechanical stress relaxation in heterogeneous materials'. Together they form a unique fingerprint.

Cite this