Abstract
The Eisenhart lift provides an elegant geometric description of a dynamical system of second order in terms of null geodesics of the Brinkmann-type metric. In this work, we attempt to generalize the Eisenhart method so as to encompass higher derivative models. The analysis relies upon Ostrogradsky's Hamiltonian. A consistent geometric description seems feasible only for a particular class of potentials. The scheme is exemplified by the Pais–Uhlenbeck oscillator.
Original language | English |
---|---|
Pages (from-to) | 86-90 |
Number of pages | 5 |
Journal | Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics |
Volume | 765 |
DOIs | |
Publication status | Published - 10 Feb 2017 |
Keywords
- Eisenhart lift
- Higher derivative mechanics
ASJC Scopus subject areas
- Nuclear and High Energy Physics