Effect of nitrogen-doping and post annealing on wettability and band gap energy of TiO2 thin film

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)


Titanium dioxide film is one of the most promising self-cleaning materials. The self-cleaning performance is directly related to the photocatalytic activity and surface wettability, which, in turn, depends on the TiO2 film structure parameters. Nitrogen-doping and post annealing are commonly used for TiO2 film treatment. The present paper addresses the mechanisms of N-doping and annealing induced TiO2 film structure transition, band gap narrowing and wettability transition. It is shown that N-doping combined with annealing leads to anatase → rutile phase transition, formation of hierarchical topography, change of surface chemical composition, and consequently results in reduction of band gap energy and water contact angle. N-doping level and N-linkages are found to significantly affect the structure/properties of annealed TiO2 and N-doped TiO2 films. The proposed mechanisms might help optimize TiO2 film synthesis and post treatment procedures. Moreover, annealed N-doped TiO2 film with highest N-content, simultaneously exhibiting anatase-rutile polycrystalline structure, high roughness, as well as lowest band gap energy and water contact angle, is supposed to present optimal self-cleaning performance.

Original languageEnglish
Article number144048
JournalApplied Surface Science
Publication statusPublished - 15 Jan 2020


  • Band gap narrowing
  • N-doped TiO film
  • Pulsed DC magnetron sputtering
  • Structure evolution
  • Wettability transition

ASJC Scopus subject areas

  • Chemistry(all)
  • Condensed Matter Physics
  • Physics and Astronomy(all)
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Effect of nitrogen-doping and post annealing on wettability and band gap energy of TiO<sub>2</sub> thin film'. Together they form a unique fingerprint.

Cite this