Abstract
The electron transport in a 1D conductor with an isolated local defect such as an impurity or a non-adiabatic contact is studied theoretically. A new regime of conduction in correlated 1D systems is predicted beyond the well-known regime of tunneling resulting in the power-law I-V-curves. In this regime a quantum wire becomes "opened" at a voltage bias above the threshold value determined by 2kF-component of impurity potential renormalized by fluctuations, giving rise to a rapid increase of the dc current, Ī, accompanied by ac oscillations of frequency f=Ī/e. Manifestations of the effect resemble the Coulomb blockade and the Josephson effect. The spin bias applied to the system affects the I-V curves due to violation of the spin-charge separation at the defect site. The 1D conductor is described in terms of the Tomonaga-Luttinger Hamiltonian with short range or long-range Coulomb interaction by means of the bosonization technique. We derive boundary conditions that take into account relaxation in the leads and permit to solve non-equilibrium problems. Charge fluctuations are studied by means of Gaussian model which can be justified strictly in the limit of large voltages or strong inter-electronic repulsion. Spin fluctuations are taken into account strictly by means of the refermionization technique applicable in the case of spin-rotation invariant interaction.
Original language | English |
---|---|
Pages (from-to) | 73-83 |
Number of pages | 11 |
Journal | Physica E: Low-Dimensional Systems and Nanostructures |
Volume | 58 |
DOIs | |
Publication status | Published - 1 Apr 2014 |
Keywords
- Impurity
- Luttinger liquid
- Quantum wire
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics