Dislocation processes during plastic deformation of Si and Ge in the range 0.50 to 0.95 of the melting temperature

A. L. Aseev, Yu N. Golobokov, S. I. Stenin

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Dislocation processes occurring during plastic deformation of Si and Ge for θ = 0.50 to 0.95 (θ = T/Tm is the relative temperature) have been studied both by etch pit method and TEM. A similarity of dislocation processes in Si and Ge when compared in terms of θ has been found. In low‐temperature deformation (θ = 0.5 to 0.8) dislocation glide is realized and cross slip is activated. The cross slip gives rise to a multiplication of dislocations. The interaction and multiplication of dislocations are accompanied by the formation of dipoles including faulted ones, multipoles, and bundles in slip bands. A system of Lomer dislocations is the main source of long‐range internal stresses in low‐temperature deformation. In high‐temperature deformation (θ > 0.8) gliding of dislocations combined with climb is realized. This results in decreasing the number of dipoles and Lomer dislocations. At θ > 0.8 a main mechanism of dislocation interaction is their intersection with the degeneration of a quadrupole node into two triple ones.

Original languageEnglish
Pages (from-to)355-364
Number of pages10
Journalphysica status solidi (a)
Volume28
Issue number1
DOIs
Publication statusPublished - 1 Jan 1975
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Dislocation processes during plastic deformation of Si and Ge in the range 0.50 to 0.95 of the melting temperature'. Together they form a unique fingerprint.

  • Cite this