Direct realization of an Operando Systems Chemistry Algorithm (OSCAL) for powering nanomotors

Apabrita Mallick, Shounik Paul, Teng Ben, Shilun Qiu, Francis Verpoort, Soumyajit Roy

Research output: Contribution to journalArticlepeer-review

Abstract

Systems chemistry focuses on emergent properties in a complex matter. To design and demonstrate such emergent properties like autonomous motion in nanomotors as an output of an Operando Systems Chemistry Algorithm (OSCAL), we employ a 2-component system comprising porous organic frameworks (POFs) and soft-oxometalates (SOMs). The OSCAL governs the motion of the nanocarpets by the coding and reading of information in an assembly/disassembly cascade switched on by a chemical stimulus. Assembly algorithm docks SOMs into the pores of the POFs of the nanocarpet leading to the encoding of supramolecular structural information in the SOM-POF hybrid nanocarpet. Input of a chemical fuel to the system induces a catalytic reaction producing propellant gases and switches on the disassembly of SOMs that are concomitantly released from the pores of the SOM-POF nanocarpets producing a ballast in the system as a read-out of the coded information acquired in the supramolecular assembly. The OSCAL governs the motion of the nanocarpets in steps. The assembly/disassembly of SOM-POFs, releasing SOMs from the pores of SOM-POFs induced by a catalytic reaction triggered by a chemical stimulus coupled with the evolution of gas are the input. The output is the autonomous linear motion of the SOM-POF nanocarpets resulting from the read-out of the input information. This work thus manifests the operation of a designed Systems Chemistry algorithm which sets supramolecularly assembled SOM-POF nanocarpets into autonomous ballistic motion. This journal is

Original languageEnglish
Pages (from-to)3543-3551
Number of pages9
JournalNanoscale
Volume13
Issue number6
DOIs
Publication statusPublished - 14 Feb 2021

ASJC Scopus subject areas

  • Materials Science(all)

Fingerprint Dive into the research topics of 'Direct realization of an Operando Systems Chemistry Algorithm (OSCAL) for powering nanomotors'. Together they form a unique fingerprint.

Cite this