Abstract
The tribomechanical properties of the wear-resistant ultrahigh molecular weight polyethylene (UHMWPE)-based composites loaded with wollastonite microfibres silanized with various coupling agents ("KH-550", "Penta-1006", and "OTS") were investigated. It was demonstrated that the mechanical properties of UHMWPE-based composites filled with various amounts of wollastonite (7-23 wt. %) increased by 1.3 times (yield strength) and by 1.8 times (elastic modulus), while the wollastonite silanization further improved yield strength by 9% in some cases. It was demonstrated that the composite loaded with 23 wt. % wollastonite silanized with the "KH-550" coupling agent possessed the maximum wear resistance under "moderate" conditions of tribological loading. Under "severe" conditions, the composites containing 23 wt. % wollastonite silanized with the less efficient "OTS" and "Penta-1006" agents showed the greatest wear resistance during dry sliding friction. Wear resistance significantly depended on filler weight fraction and the load-speed mode of the tribological tests. Based on the obtained experimental data on the mechanical (including impact toughness) and tribological properties of the UHMWPE-based composites loaded with wollastonite, the optimal compositions (the filler content and the type of the coupling agent) for two load-speed modes were designed using the developed computer algorithm. The composites provided the predefined high tribomechanical properties for operation in the metal-polymer friction units compared to neat polymer.
Original language | English |
---|---|
Article number | 4511 |
Journal | Applied Sciences (Switzerland) |
Volume | 10 |
Issue number | 13 |
DOIs | |
Publication status | Published - 1 Jul 2020 |
Keywords
- Adhesion
- Permolecular structure
- Silane coupling agent
- Strength
- Ultra-high molecular weight polyethylene
- Wear resistance
- Wollastonite
ASJC Scopus subject areas
- Materials Science(all)
- Instrumentation
- Engineering(all)
- Process Chemistry and Technology
- Computer Science Applications
- Fluid Flow and Transfer Processes