Classification of Vegetation to Estimate Forest Fire Danger Using Landsat 8 Images

Case Study

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

The vegetation cover of the Earth plays an important role in the life of mankind, whether it is natural forest or agricultural crop. The study of the variability of the vegetation cover, as well as observation of its condition, allows timely actions to make a forecast and monitor and estimate the forest fire condition. The objectives of the research were (i) to process the satellite image of the Gilbirinskiy forestry located in the basin of Lake Baikal; (ii) to select homogeneous areas of forest vegetation on the basis of their spectral characteristics; (iii) to estimate the level of forest fire danger of the area by vegetation types. The paper presents an approach for estimation of forest fire danger depending on vegetation type and radiant heat flux influence using geographic information systems (GIS) and remote sensing data. The Environment for Visualizing Images (ENVI) and the Geographic Resources Analysis Support System (GRASS) software were used to process satellite images. The area's forest fire danger estimation and visual presentation of the results were carried out in ArcGIS Desktop software. Information on the vegetation was obtained using the analysis of the Landsat 8 Operational Land Imager (OLI) images for a typical forestry of the Lake Baikal natural area. The maps (schemes) of the Gilbirinskiy forestry were also used in the present article. The unsupervised k-means classification was used. Principal component analysis (PCA) was applied to increase the accuracy of decoding. The classification of forest areas according to the level of fire danger caused by the typical ignition source was carried out using the developed method. The final information product was the map displaying vector polygonal feature class, containing the type of vegetation and the level of fire danger for each forest quarter in the attribute table. The fire danger estimation method developed by the authors was applied to each separate quarter and showed realistic results. The method used may be applicable for other areas with prevailing forest vegetation.

Original languageEnglish
Article number6296417
JournalMathematical Problems in Engineering
Volume2019
DOIs
Publication statusPublished - 1 Jan 2019

Fingerprint

Forest Fire
Landsat
Vegetation
Fires
Estimate
Forestry
Satellite Images
Lakes
Satellites
Cover
Geographic Information Systems
K-means
Ignition
Imager
Heat Flux
Image sensors
Catchments
Remote Sensing
Principal component analysis
Geographic information systems

ASJC Scopus subject areas

  • Mathematics(all)
  • Engineering(all)

Cite this

@article{eeb258e798a94c4a8e4a8678d3c08b98,
title = "Classification of Vegetation to Estimate Forest Fire Danger Using Landsat 8 Images: Case Study",
abstract = "The vegetation cover of the Earth plays an important role in the life of mankind, whether it is natural forest or agricultural crop. The study of the variability of the vegetation cover, as well as observation of its condition, allows timely actions to make a forecast and monitor and estimate the forest fire condition. The objectives of the research were (i) to process the satellite image of the Gilbirinskiy forestry located in the basin of Lake Baikal; (ii) to select homogeneous areas of forest vegetation on the basis of their spectral characteristics; (iii) to estimate the level of forest fire danger of the area by vegetation types. The paper presents an approach for estimation of forest fire danger depending on vegetation type and radiant heat flux influence using geographic information systems (GIS) and remote sensing data. The Environment for Visualizing Images (ENVI) and the Geographic Resources Analysis Support System (GRASS) software were used to process satellite images. The area's forest fire danger estimation and visual presentation of the results were carried out in ArcGIS Desktop software. Information on the vegetation was obtained using the analysis of the Landsat 8 Operational Land Imager (OLI) images for a typical forestry of the Lake Baikal natural area. The maps (schemes) of the Gilbirinskiy forestry were also used in the present article. The unsupervised k-means classification was used. Principal component analysis (PCA) was applied to increase the accuracy of decoding. The classification of forest areas according to the level of fire danger caused by the typical ignition source was carried out using the developed method. The final information product was the map displaying vector polygonal feature class, containing the type of vegetation and the level of fire danger for each forest quarter in the attribute table. The fire danger estimation method developed by the authors was applied to each separate quarter and showed realistic results. The method used may be applicable for other areas with prevailing forest vegetation.",
author = "Yankovich, {Ksenia S.} and Yankovich, {Elena P.} and Baranovskiy, {Nikolay V.}",
year = "2019",
month = "1",
day = "1",
doi = "10.1155/2019/6296417",
language = "English",
volume = "2019",
journal = "Mathematical Problems in Engineering",
issn = "1024-123X",
publisher = "Hindawi Publishing Corporation",

}

TY - JOUR

T1 - Classification of Vegetation to Estimate Forest Fire Danger Using Landsat 8 Images

T2 - Case Study

AU - Yankovich, Ksenia S.

AU - Yankovich, Elena P.

AU - Baranovskiy, Nikolay V.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - The vegetation cover of the Earth plays an important role in the life of mankind, whether it is natural forest or agricultural crop. The study of the variability of the vegetation cover, as well as observation of its condition, allows timely actions to make a forecast and monitor and estimate the forest fire condition. The objectives of the research were (i) to process the satellite image of the Gilbirinskiy forestry located in the basin of Lake Baikal; (ii) to select homogeneous areas of forest vegetation on the basis of their spectral characteristics; (iii) to estimate the level of forest fire danger of the area by vegetation types. The paper presents an approach for estimation of forest fire danger depending on vegetation type and radiant heat flux influence using geographic information systems (GIS) and remote sensing data. The Environment for Visualizing Images (ENVI) and the Geographic Resources Analysis Support System (GRASS) software were used to process satellite images. The area's forest fire danger estimation and visual presentation of the results were carried out in ArcGIS Desktop software. Information on the vegetation was obtained using the analysis of the Landsat 8 Operational Land Imager (OLI) images for a typical forestry of the Lake Baikal natural area. The maps (schemes) of the Gilbirinskiy forestry were also used in the present article. The unsupervised k-means classification was used. Principal component analysis (PCA) was applied to increase the accuracy of decoding. The classification of forest areas according to the level of fire danger caused by the typical ignition source was carried out using the developed method. The final information product was the map displaying vector polygonal feature class, containing the type of vegetation and the level of fire danger for each forest quarter in the attribute table. The fire danger estimation method developed by the authors was applied to each separate quarter and showed realistic results. The method used may be applicable for other areas with prevailing forest vegetation.

AB - The vegetation cover of the Earth plays an important role in the life of mankind, whether it is natural forest or agricultural crop. The study of the variability of the vegetation cover, as well as observation of its condition, allows timely actions to make a forecast and monitor and estimate the forest fire condition. The objectives of the research were (i) to process the satellite image of the Gilbirinskiy forestry located in the basin of Lake Baikal; (ii) to select homogeneous areas of forest vegetation on the basis of their spectral characteristics; (iii) to estimate the level of forest fire danger of the area by vegetation types. The paper presents an approach for estimation of forest fire danger depending on vegetation type and radiant heat flux influence using geographic information systems (GIS) and remote sensing data. The Environment for Visualizing Images (ENVI) and the Geographic Resources Analysis Support System (GRASS) software were used to process satellite images. The area's forest fire danger estimation and visual presentation of the results were carried out in ArcGIS Desktop software. Information on the vegetation was obtained using the analysis of the Landsat 8 Operational Land Imager (OLI) images for a typical forestry of the Lake Baikal natural area. The maps (schemes) of the Gilbirinskiy forestry were also used in the present article. The unsupervised k-means classification was used. Principal component analysis (PCA) was applied to increase the accuracy of decoding. The classification of forest areas according to the level of fire danger caused by the typical ignition source was carried out using the developed method. The final information product was the map displaying vector polygonal feature class, containing the type of vegetation and the level of fire danger for each forest quarter in the attribute table. The fire danger estimation method developed by the authors was applied to each separate quarter and showed realistic results. The method used may be applicable for other areas with prevailing forest vegetation.

UR - http://www.scopus.com/inward/record.url?scp=85063302603&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063302603&partnerID=8YFLogxK

U2 - 10.1155/2019/6296417

DO - 10.1155/2019/6296417

M3 - Article

VL - 2019

JO - Mathematical Problems in Engineering

JF - Mathematical Problems in Engineering

SN - 1024-123X

M1 - 6296417

ER -