Cellular automata simulation of recrystallization at hot crack surfaces

D. D. Moiseenko, S. V. Panin, P. V. Maksimov, D. S. Babich, V. E. Panin, S. Schmauder

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A Hybrid discrete-continuum Cellular Automata (HCA) approach based on coupling classical thermomechanics and logics of CA-switching to simulate new phase generation and grain growth is proposed. On the basis of the HCA, numerical experiments on thermal-activated recrystallization of pure titanium in the vicinity of crack edges are performed. The 3D cellular automaton is aimed at simulating the behavior of a V-notched specimen region that imitates the crack tip vicinity. Numerical experiments provide calculating heat expansion in the material under study through taking into account thermal stress accumulation and microrotation initiation. The latter gives rise to the generation of new defects and increases local entropy.

Original languageEnglish
Title of host publicationMechanics, Resource and Diagnostics of Materials and Structures, MRDMS 2018
Subtitle of host publicationProceedings of the 12th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures
EditorsSunder Ramasubbu, Eduard S. Gorkunov, Victor E. Panin
PublisherAmerican Institute of Physics Inc.
Volume2053
ISBN (Electronic)9780735417816
DOIs
Publication statusPublished - 19 Dec 2018
Event12th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures, MRDMS 2018 - Ekaterinburg, Russian Federation
Duration: 21 May 201825 May 2018

Conference

Conference12th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures, MRDMS 2018
CountryRussian Federation
CityEkaterinburg
Period21.5.1825.5.18

    Fingerprint

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Moiseenko, D. D., Panin, S. V., Maksimov, P. V., Babich, D. S., Panin, V. E., & Schmauder, S. (2018). Cellular automata simulation of recrystallization at hot crack surfaces. In S. Ramasubbu, E. S. Gorkunov, & V. E. Panin (Eds.), Mechanics, Resource and Diagnostics of Materials and Structures, MRDMS 2018: Proceedings of the 12th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures (Vol. 2053). [030044] American Institute of Physics Inc.. https://doi.org/10.1063/1.5084405