TY - JOUR
T1 - Application of Cross-correlation Analysis Method for Measurement of the Fluid Flow Rate Based on X-ray Radiation
AU - Borodulya, N. A.
AU - Rezaev, R. O.
AU - Chistyakov, S. G.
AU - Smirnova, E. I.
AU - Gogolev, A. S.
AU - Filatov, N. A.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - In this work, we have demonstrated a principal scheme of application of cross-correlation analysis method for the determination of the velocity of a moving object in a fluid. In particular, the peak values of the correlation function differ from the background by two times. It allows us to accurately detect the useful signal. Generalization of the proposed approach to the case of determination of the fluid flow rate does not require modification of the basic principles of installations or cross-correlation method. The scheme of the developed experimental setup is the following: X-ray source produces the radiation with a complex spectrum, which is directed to the pipe filled with a multicomponent mixture. One part of the X-rays passes through the windows made of material with the low absorption coefficient and the mixture. Another part of radiation passes through the pipe's walls and is not practically absorbed by the walls, thereby forming a narrow beam. The beam, having passed through a multicomponent mixture, becomes a carrier of information about its characteristics, as well as the dependence on the composition and parameters of multiphase liquids. The X-ray radiation propagates and is scattered due to the photoelectric effect and Compton scattering. A crystalline monochromator analyzer consists of two single-crystal plastic cores (111) and (100). A part of the X-ray beam satisfying the Bragg conditions diffracts on the crystal monochromator analyzer, the other part passes it without deviations. Differential crystalline monochromator-analyzer radiation is directed to the counter ionizing radiation. A two-channel scintillation counter ionizing radiation registers monochromatic radiation at low and high energy corresponding to the Bragg condition for the crystal monochromator-analyzer.
AB - In this work, we have demonstrated a principal scheme of application of cross-correlation analysis method for the determination of the velocity of a moving object in a fluid. In particular, the peak values of the correlation function differ from the background by two times. It allows us to accurately detect the useful signal. Generalization of the proposed approach to the case of determination of the fluid flow rate does not require modification of the basic principles of installations or cross-correlation method. The scheme of the developed experimental setup is the following: X-ray source produces the radiation with a complex spectrum, which is directed to the pipe filled with a multicomponent mixture. One part of the X-rays passes through the windows made of material with the low absorption coefficient and the mixture. Another part of radiation passes through the pipe's walls and is not practically absorbed by the walls, thereby forming a narrow beam. The beam, having passed through a multicomponent mixture, becomes a carrier of information about its characteristics, as well as the dependence on the composition and parameters of multiphase liquids. The X-ray radiation propagates and is scattered due to the photoelectric effect and Compton scattering. A crystalline monochromator analyzer consists of two single-crystal plastic cores (111) and (100). A part of the X-ray beam satisfying the Bragg conditions diffracts on the crystal monochromator analyzer, the other part passes it without deviations. Differential crystalline monochromator-analyzer radiation is directed to the counter ionizing radiation. A two-channel scintillation counter ionizing radiation registers monochromatic radiation at low and high energy corresponding to the Bragg condition for the crystal monochromator-analyzer.
KW - Cross-correlation analysis
KW - Fluid flow rate
KW - X-ray radiation
KW - Крос-кореляційний аналіз
KW - Рентгенівське випромінювання
KW - Швидкість потоку рідини
UR - http://www.scopus.com/inward/record.url?scp=85062028062&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062028062&partnerID=8YFLogxK
U2 - 10.21272/jnep.11(1).01025
DO - 10.21272/jnep.11(1).01025
M3 - Article
AN - SCOPUS:85062028062
VL - 11
JO - Journal of Nano- and Electronic Physics
JF - Journal of Nano- and Electronic Physics
SN - 2077-6772
IS - 1
M1 - 01025
ER -