Analysis of the properties of working substances for the organic rankine cycle based database "REFPROP"

Research output: Contribution to journalConference article

6 Citations (Scopus)

Abstract

The object of the study are substances that are used as a working fluid in systems operating on the basis of an organic Rankine cycle. The purpose of research is to find substances with the best thermodynamic, thermal and environmental properties. Research conducted on the basis of the analysis of thermodynamic and thermal properties of substances from the base "REFPROP" and with the help of numerical simulation of combined-cycle plant utilization triple cycle, where the lower cycle is an organic Rankine cycle. Base "REFPROP" describes and allows to calculate the thermodynamic and thermophysical parameters of most of the main substances used in production processes. On the basis of scientific publications on the use of working fluids in an organic Rankine cycle analysis were selected ozone-friendly low-boiling substances: ammonia, butane, pentane and Freon: R134a, R152a, R236fa and R245fa. For these substances have been identified and tabulated molecular weight, temperature of the triple point, boiling point, at atmospheric pressure, the parameters of the critical point, the value of the derivative of the temperature on the entropy of the saturated vapor line and the potential ozone depletion and global warming. It was also identified and tabulated thermodynamic and thermophysical parameters of the steam and liquid substances in a state of saturation at a temperature of 15 °C. This temperature is adopted as the minimum temperature of heat removal in the Rankine cycle when working on the water. Studies have shown that the best thermodynamic, thermal and environmental properties of the considered substances are pentane, butane and R245fa. For a more thorough analysis based on a gas turbine plant NK-36ST it has developed a mathematical model of combined cycle gas turbine (CCGT) triple cycle, where the lower cycle is an organic Rankine cycle, and is used as the air cooler condenser. Air condenser allows stating material at a temperature below 0 °C. Calculation of the parameters of all substances in the model are based on a base "REFPROP". Numerical investigations on this model showed that the highest net efficiency will be at work on pentane. Butane and R245fa have the same net efficiency, for 0.8% lower than pentane. Ammonia has a net efficiency of 2.5% is lower than pentane. CCP net efficiency strongly depends on the condensation temperature of the substance, as for pentane at lower temperature of condensation at 10 °C it is increased by 1%.

Original languageEnglish
Article number01068
JournalEPJ Web of Conferences
Volume110
DOIs
Publication statusPublished - 23 Feb 2016
EventThermophysical Basis of Energy Technologies 2015 - Tomsk, Russian Federation
Duration: 13 Oct 201515 Oct 2015

Fingerprint

Rankine cycle
pentanes
cycles
butanes
thermodynamic properties
thermodynamics
working fluids
gas turbines
condensers
temperature
boiling
ammonia
condensation
freon
ozone depletion
global warming
air
coolers
steam
ozone

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Analysis of the properties of working substances for the organic rankine cycle based database "REFPROP". / Galashov, Nikolay; Tsibulskiy, Svyatoslav; Serova, Tatiana.

In: EPJ Web of Conferences, Vol. 110, 01068, 23.02.2016.

Research output: Contribution to journalConference article

@article{adc235e0bfb44ad28f460e840572e495,
title = "Analysis of the properties of working substances for the organic rankine cycle based database {"}REFPROP{"}",
abstract = "The object of the study are substances that are used as a working fluid in systems operating on the basis of an organic Rankine cycle. The purpose of research is to find substances with the best thermodynamic, thermal and environmental properties. Research conducted on the basis of the analysis of thermodynamic and thermal properties of substances from the base {"}REFPROP{"} and with the help of numerical simulation of combined-cycle plant utilization triple cycle, where the lower cycle is an organic Rankine cycle. Base {"}REFPROP{"} describes and allows to calculate the thermodynamic and thermophysical parameters of most of the main substances used in production processes. On the basis of scientific publications on the use of working fluids in an organic Rankine cycle analysis were selected ozone-friendly low-boiling substances: ammonia, butane, pentane and Freon: R134a, R152a, R236fa and R245fa. For these substances have been identified and tabulated molecular weight, temperature of the triple point, boiling point, at atmospheric pressure, the parameters of the critical point, the value of the derivative of the temperature on the entropy of the saturated vapor line and the potential ozone depletion and global warming. It was also identified and tabulated thermodynamic and thermophysical parameters of the steam and liquid substances in a state of saturation at a temperature of 15 °C. This temperature is adopted as the minimum temperature of heat removal in the Rankine cycle when working on the water. Studies have shown that the best thermodynamic, thermal and environmental properties of the considered substances are pentane, butane and R245fa. For a more thorough analysis based on a gas turbine plant NK-36ST it has developed a mathematical model of combined cycle gas turbine (CCGT) triple cycle, where the lower cycle is an organic Rankine cycle, and is used as the air cooler condenser. Air condenser allows stating material at a temperature below 0 °C. Calculation of the parameters of all substances in the model are based on a base {"}REFPROP{"}. Numerical investigations on this model showed that the highest net efficiency will be at work on pentane. Butane and R245fa have the same net efficiency, for 0.8{\%} lower than pentane. Ammonia has a net efficiency of 2.5{\%} is lower than pentane. CCP net efficiency strongly depends on the condensation temperature of the substance, as for pentane at lower temperature of condensation at 10 °C it is increased by 1{\%}.",
author = "Nikolay Galashov and Svyatoslav Tsibulskiy and Tatiana Serova",
year = "2016",
month = "2",
day = "23",
doi = "10.1051/epjconf/201611001068",
language = "English",
volume = "110",
journal = "EPJ Web of Conference",
issn = "2100-014X",
publisher = "EDP Sciences",

}

TY - JOUR

T1 - Analysis of the properties of working substances for the organic rankine cycle based database "REFPROP"

AU - Galashov, Nikolay

AU - Tsibulskiy, Svyatoslav

AU - Serova, Tatiana

PY - 2016/2/23

Y1 - 2016/2/23

N2 - The object of the study are substances that are used as a working fluid in systems operating on the basis of an organic Rankine cycle. The purpose of research is to find substances with the best thermodynamic, thermal and environmental properties. Research conducted on the basis of the analysis of thermodynamic and thermal properties of substances from the base "REFPROP" and with the help of numerical simulation of combined-cycle plant utilization triple cycle, where the lower cycle is an organic Rankine cycle. Base "REFPROP" describes and allows to calculate the thermodynamic and thermophysical parameters of most of the main substances used in production processes. On the basis of scientific publications on the use of working fluids in an organic Rankine cycle analysis were selected ozone-friendly low-boiling substances: ammonia, butane, pentane and Freon: R134a, R152a, R236fa and R245fa. For these substances have been identified and tabulated molecular weight, temperature of the triple point, boiling point, at atmospheric pressure, the parameters of the critical point, the value of the derivative of the temperature on the entropy of the saturated vapor line and the potential ozone depletion and global warming. It was also identified and tabulated thermodynamic and thermophysical parameters of the steam and liquid substances in a state of saturation at a temperature of 15 °C. This temperature is adopted as the minimum temperature of heat removal in the Rankine cycle when working on the water. Studies have shown that the best thermodynamic, thermal and environmental properties of the considered substances are pentane, butane and R245fa. For a more thorough analysis based on a gas turbine plant NK-36ST it has developed a mathematical model of combined cycle gas turbine (CCGT) triple cycle, where the lower cycle is an organic Rankine cycle, and is used as the air cooler condenser. Air condenser allows stating material at a temperature below 0 °C. Calculation of the parameters of all substances in the model are based on a base "REFPROP". Numerical investigations on this model showed that the highest net efficiency will be at work on pentane. Butane and R245fa have the same net efficiency, for 0.8% lower than pentane. Ammonia has a net efficiency of 2.5% is lower than pentane. CCP net efficiency strongly depends on the condensation temperature of the substance, as for pentane at lower temperature of condensation at 10 °C it is increased by 1%.

AB - The object of the study are substances that are used as a working fluid in systems operating on the basis of an organic Rankine cycle. The purpose of research is to find substances with the best thermodynamic, thermal and environmental properties. Research conducted on the basis of the analysis of thermodynamic and thermal properties of substances from the base "REFPROP" and with the help of numerical simulation of combined-cycle plant utilization triple cycle, where the lower cycle is an organic Rankine cycle. Base "REFPROP" describes and allows to calculate the thermodynamic and thermophysical parameters of most of the main substances used in production processes. On the basis of scientific publications on the use of working fluids in an organic Rankine cycle analysis were selected ozone-friendly low-boiling substances: ammonia, butane, pentane and Freon: R134a, R152a, R236fa and R245fa. For these substances have been identified and tabulated molecular weight, temperature of the triple point, boiling point, at atmospheric pressure, the parameters of the critical point, the value of the derivative of the temperature on the entropy of the saturated vapor line and the potential ozone depletion and global warming. It was also identified and tabulated thermodynamic and thermophysical parameters of the steam and liquid substances in a state of saturation at a temperature of 15 °C. This temperature is adopted as the minimum temperature of heat removal in the Rankine cycle when working on the water. Studies have shown that the best thermodynamic, thermal and environmental properties of the considered substances are pentane, butane and R245fa. For a more thorough analysis based on a gas turbine plant NK-36ST it has developed a mathematical model of combined cycle gas turbine (CCGT) triple cycle, where the lower cycle is an organic Rankine cycle, and is used as the air cooler condenser. Air condenser allows stating material at a temperature below 0 °C. Calculation of the parameters of all substances in the model are based on a base "REFPROP". Numerical investigations on this model showed that the highest net efficiency will be at work on pentane. Butane and R245fa have the same net efficiency, for 0.8% lower than pentane. Ammonia has a net efficiency of 2.5% is lower than pentane. CCP net efficiency strongly depends on the condensation temperature of the substance, as for pentane at lower temperature of condensation at 10 °C it is increased by 1%.

UR - http://www.scopus.com/inward/record.url?scp=84961879855&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84961879855&partnerID=8YFLogxK

U2 - 10.1051/epjconf/201611001068

DO - 10.1051/epjconf/201611001068

M3 - Conference article

VL - 110

JO - EPJ Web of Conference

JF - EPJ Web of Conference

SN - 2100-014X

M1 - 01068

ER -