Allothermal gasification of peat and lignite by a focused light flow

Alexandr S. Zaitsev, Roman I. Taburchinov, Irina P. Ozerova, Amaro O. Pereira, Roman I. Egorov

Research output: Contribution to journalArticle

Abstract

Gasification of peat and lignite under a focused light flow was observed in a wide range of fuel moisture (up to 65 wt. %). The initial water content in the fuels under study had a different influence on the chemical composition of the synthesis gas (syngas). At the same time, the effect of light intensity was more predictable: in general, the production of gases grew with it. It was shown that the gasification of peat accelerated greatly when light intensity exceeded 100 W/cm2. Moreover, the conversion of peat and lignite required an order of magnitude lower intensity of the light flow than was necessary for the conversion of bituminous coal processing waste. The dynamics of the sample weight changes demonstrated that contrary to bituminous coals, the process was not purely allothermal for both peat and lignite. However, the fuel smoldering was not self-sustainable and stopped shortly after the pumping light was turned off.

Original languageEnglish
Article number2640
JournalApplied Sciences (Switzerland)
Volume10
Issue number8
DOIs
Publication statusPublished - 1 Apr 2020

Keywords

  • Allothermal gasification
  • Focused light
  • Lignite
  • Peat
  • Synthesis gas

ASJC Scopus subject areas

  • Materials Science(all)
  • Instrumentation
  • Engineering(all)
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Fingerprint Dive into the research topics of 'Allothermal gasification of peat and lignite by a focused light flow'. Together they form a unique fingerprint.

  • Cite this