Advanced Characterization Methods for Electrical and Sensoric Components and Devices at the Micro and Nano Scales

Evgeniya Sheremet, Peter Meszmer, Thomas Blaudeck, Susanne Hartmann, Christian Wagner, Bing Ma, Sascha Hermann, Bernhard Wunderle, Stefan E. Schulz, Michael Hietschold, Raul D. Rodriguez, Dietrich R.T. Zahn

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


The present study covers the nanoanalysis methods for four key material characteristics: electrical and electronic properties, optical, stress and strain, and chemical composition. With the downsizing of the geometrical dimensions of the electronic, optoelectronic, and electromechanical devices from the micro to the nanoscale and the simultaneous increase in the functionality density, the previous generation of microanalysis methods is no longer sufficient. Therefore, the metrology of materials' properties with nanoscale resolution is a prerequisite in materials' research and development. The article reviews the standard analysis methods and focuses on the advanced methods with a nanoscale spatial resolution based on atomic force microscopy (AFM): current-sensing AFM (CS-AFM), Kelvin probe force microscopy (KPFM), and hybrid optical techniques coupled with AFM including tip-enhanced Raman spectroscopy (TERS), photothermal-induced resonance (PTIR) characterization methods (nano-Vis, nano-IR), and photo-induced force microscopy (PIFM). The simultaneous acquisition of multiple parameters (topography, charge and conductivity, stress and strain, and chemical composition) at the nanoscale is a key for exploring new research on structure–property relationships of nanostructured materials, such as carbon nanotubes (CNTs) and nano/microelectromechanical systems (N/MEMS). Advanced nanocharacterization techniques foster the design and development of new functional materials for flexible hybrid and smart applications.

Original languageEnglish
Article number1900106
JournalPhysica Status Solidi (A) Applications and Materials Science
Issue number19
Publication statusPublished - 1 Oct 2019


  • atomic force microscopy
  • Kelvin probe force microscopy
  • nanoanalysis
  • Raman spectroscopy
  • scanning probe microscopy

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Advanced Characterization Methods for Electrical and Sensoric Components and Devices at the Micro and Nano Scales'. Together they form a unique fingerprint.

Cite this