Adiabatic limits on Riemannian Heisenberg manifolds

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold.

Original languageEnglish
Pages (from-to)307-318
Number of pages12
JournalSbornik Mathematics
Volume199
Issue number1-2
DOIs
Publication statusPublished - 1 Jan 2008
Externally publishedYes

Fingerprint

Laplace Operator
Foliation
Asymptotic Formula
Distribution Function
Orbit
Invariant

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this

Adiabatic limits on Riemannian Heisenberg manifolds. / Yakovlev, A. A.

In: Sbornik Mathematics, Vol. 199, No. 1-2, 01.01.2008, p. 307-318.

Research output: Contribution to journalArticle

@article{18eedf84c73b492dbefaeaff1cb23eb7,
title = "Adiabatic limits on Riemannian Heisenberg manifolds",
abstract = "An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold.",
author = "Yakovlev, {A. A.}",
year = "2008",
month = "1",
day = "1",
doi = "10.1070/SM2008v199n02ABEH003921",
language = "English",
volume = "199",
pages = "307--318",
journal = "Sbornik Mathematics",
issn = "1064-5616",
publisher = "Turpion Ltd.",
number = "1-2",

}

TY - JOUR

T1 - Adiabatic limits on Riemannian Heisenberg manifolds

AU - Yakovlev, A. A.

PY - 2008/1/1

Y1 - 2008/1/1

N2 - An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold.

AB - An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold.

UR - http://www.scopus.com/inward/record.url?scp=44449154339&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=44449154339&partnerID=8YFLogxK

U2 - 10.1070/SM2008v199n02ABEH003921

DO - 10.1070/SM2008v199n02ABEH003921

M3 - Article

AN - SCOPUS:44449154339

VL - 199

SP - 307

EP - 318

JO - Sbornik Mathematics

JF - Sbornik Mathematics

SN - 1064-5616

IS - 1-2

ER -