A novel hybrid metaheuristic optimization method: hypercube natural aggregation algorithm

Oscar Maciel, Arturo Valdivia, Diego Oliva, Erik Cuevas, Daniel Zaldívar, Marco Pérez-Cisneros

Research output: Contribution to journalArticle

Abstract

Abstract: The natural aggregation algorithm (NAA) is a new efficient population-based optimizer. The NAA has a competent performance when compared to other well-established optimizers. However, a problem of concern is NAA lack of exploitation in its local search. In this article, we propose an improved version of NAA. The modifications made are: hypercubes with displacement and shrink mechanism applied in each shelter, we designed a new movement operator to search inside the hypercubes, an improved readjustment of the algorithm’s parameters and “leave shelter” formula of NAA, to better mimic the aggregation behavior. To prove the effectiveness of the modified hypercube natural aggregation algorithm (HYNAA), we compared with classics optimizers, such as PSO, DE and ABC, state of the art, such as CMA-ES, MSA and NAA himself with a benchmark of 28 functions. The said functions consist of five unimodal, 19 multimodal and four hybrids, and we compared them on 30, 50 and 100 dimensions. We also made extra comparisons against NAA in 500 and 1000 dimensions to contrast the ability of the hypercubes to reduce the dimensional complexity. Finally, we tested two trajectory optimization problems. Experimental results and statistical tests demonstrate that the performance of HYNAA is significantly better than that of other optimizers. Graphic abstract: [Figure not available: see fulltext.].

Original languageEnglish
Pages (from-to)8823-8856
Number of pages34
JournalSoft Computing
Volume24
Issue number12
DOIs
Publication statusPublished - 1 Jun 2020
Externally publishedYes

Keywords

  • Hybrid optimization techniques
  • Hypercube optimization (HO)
  • Metaheuristic optimization
  • Natural aggregation algorithm (NAA)

ASJC Scopus subject areas

  • Software
  • Theoretical Computer Science
  • Geometry and Topology

Fingerprint Dive into the research topics of 'A novel hybrid metaheuristic optimization method: hypercube natural aggregation algorithm'. Together they form a unique fingerprint.

  • Cite this

    Maciel, O., Valdivia, A., Oliva, D., Cuevas, E., Zaldívar, D., & Pérez-Cisneros, M. (2020). A novel hybrid metaheuristic optimization method: hypercube natural aggregation algorithm. Soft Computing, 24(12), 8823-8856. https://doi.org/10.1007/s00500-019-04416-2